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Recent work on the Taylor-Couette problem in the infinite-cylinder approximation has revealed that, if the
driving velocity of the inner cylinder is not steady but modulates in time, two classes of time-dependent flow
exist: reversing flows and nonreversing flows. The latter are at first surprising, since the direction of rotation of
the Taylor vortices is decoupled from the (driving) azimuthal flow. Since experiments are performed in cylin-
ders of finite height, the natural question which we address in this paper is whether the Ekman circulation
induced by the end walls suppresses the reversing-nonreversing effect. We find that the answer is negative—
nonreversing flows are actually favoured—and we reveal a variety of new flow patterns including “side-by-

side” vortices.
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I. INTRODUCTION

The transition from azimuthal Couette flow to a cellular
Taylor vortex flow pattern has long been recognized as a
cornerstone of hydrodynamic stability theory. In recent pa-
pers [1,2] we have considered a variation of this classical
problem (assuming the infinite-cylinder approximation), in
which the inner cylinder’s angular velocity is not steady but
oscillates harmonically around zero mean according to

Q1) =Q, cos(wt), (1)

where ), and o are the dimensional amplitude and fre-
quency, respectively, and the outer cylinder remains at rest.
We have found that two classes of Taylor vortex flow exist.
In the first class the direction of rotation of the Taylor vortex
flow is the natural one which is induced by the direction of
rotation of the azimuthal flow imposed by the inner cylinder,
so it changes sign during each cycle; we called this class
reversing Taylor vortex flow (RTVF)—see Fig. 1. In the sec-
ond class, which occurs at sufficiently large amplitude and
frequency of modulation, the Taylor vortices always rotate in
the same direction, irrespective of the direction of the under-
lying azimuthal flow, thus keeping memory of the first cycle;
we called this class nonreversing Taylor vortex flow
(NRTVF)—see Fig. 2. At the same amplitude of modulation,
the transition from RTVF to NRTVF takes place at a critical
frequency w. We also found the existence of reversing and
nonreversing flows in the wavy-mode regime. Here, the non-
reversing flow takes the form of a spiral mode. This same
effect was also found by Zhang [3] in spherical geometry.
Our calculations were based on the usual approximation
of infinite cylinders. However, the work of Benjamin [4,5],
Benjamin and Mullin [6], Cliffe [7], Pfister et al. [8], Cliffe
et al. [9], Mullin et al. [10], Furukawa et al. [11], and Lopez
and Marques [12] has shown that end effects play a key role
in selecting the steady cellular vortex pattern and that an
important parameter of the problem is the aspect ratio I" (the
ratio of the height of the cylinders to the width of the gap).
The existence of the ends gives rise to the so-called “anoma-
lous” modes where the cells close to the ends have a direc-
tion of rotation which is apparently opposite to what is ini-
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tially expected (radial outflow at the midplane where the
centrifugal force is stronger and radial inflows near the cyl-
inders’ ends). The anomalous modes appear to have an out-
flow at the ends; closer inspection reveals the existence of
small vortices in the corners near to the inner cylinder, but
the name ‘“anomalous” has not been changed and has re-
mained in the literature to distinguish this remarkable flow
pattern. In terms of bifurcation theory, anomalous modes are
always disconnected from the primary two-cell flow; only
one exception is known: as the aspect ratio is reduced such
that the height of the cylinders is of the order of the gap
between the cylinders, an anomalous one-cell state is found
which is connected to the primary flow and can be realized
by a quasistatic increase in the Reynolds number.

In the infinite-cylinder approximation and in relatively
long cylinders, the vortices which form are true Taylor vor-
tices in the sense that each pair of vortices has a fixed wave-
length over (most of) the length of the cylinders. However,
strictly speaking, once the cylinders become shorter, it is no
longer appropriate to describe the formation of Taylor vorti-
ces due to the presence of the Ekman circulation, which can
cause the wavelength of a pair of vortices to differ along the
length of the cylinders; instead, we describe the formation of
cells. However, due to the difficulty in knowing exactly
when we have the formation of Taylor vortices or the forma-
tion of cells, we use the two words “vortices” and “cells”
interchangeably throughout this paper.

The aim of this paper is twofold. First, we want to deter-
mine whether or not, in the case of a temporally modulated
flow, the presence of the ends and the resulting Ekman cir-
culation can prevent the occurrence of reversing or nonre-
versing flows. Second, we want to explore the very-small-
aspect-ratio regime. In this case we examine the effect of a
temporal modulation on the selection of the one- and two-
cell flow structures that have been observed in the steady
case. Essentially we want to determine whether the transition
from RTVF to the newly discovered NRTVF depends on the
cylinders’ finite height in an actual experimental apparatus.

The plan of the paper is the following. Section II contains
the governing equations of motion and a brief description of
the numerical method. Results are presented in Secs. III and
IV. Section III is divided into four parts: low-frequency
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FIG. 1. Schematic of reversing Taylor vortex flow (RTVF). In
(a) the inner cylinder rotates in a counterclockwise direction (say, at
t=7/4, where 7=27/w is the period of the forcing and w is the
dimensionless frequency) and the vortices respond by rotating in a
particular radial direction; in (b) the inner cylinder rotates in a
clockwise direction (say, at r=37/4) and the vortices respond by
rotating in the opposite radial direction to the first half-cycle.

modulation at intermediate aspect ratios (Sec. IIT A), low-
frequency modulation at large aspect ratios (Sec. III B),
high-frequency modulation (Sec. III C), and noninteger as-
pect ratios (Sec. III D). The first part (Sec. III A) is further
divided into three subparts devoted, respectively, to small
(Sec. T A 1), intermediate (Sec. IIT A 2), and large (Sec.
III A 3) amplitudes of modulation. Section IV is concerned
with results at small aspect ratios. Section V contains a final
discussion.

II. EQUATIONS, BOUNDARY CONDITIONS,
AND FORMULATION

We study the problem using the incompressible Navier-
Stokes equations

1
du+w-Viu=——Vp+vVu, (2)
p

V-u=0, (3)

where u is the fluid velocity, p is the pressure, and v is the
(constant) kinematic viscosity. We let R, and R, be the inner
and outer cylinder radii, respectively, and we use cylindrical
coordinates (r, 6,z). We nondimensionalize the equations us-
ing the gap between the cylinders 6=R,—R; as the length
scale and the viscous diffusion time across the gap &/v as
the time scale. The resulting dimensionless parameters are
the radius ratio 7=R,/R,, the aspect ratio I'=h/ 5 (where h is
the height of the cylinders) and the imposed amplitude and
frequency of modulation, Re,,4={2,0R,/ v and w; the instan-
taneous Reynolds number of the inner cylinder is thus
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FIG. 2. Schematic of nonreversing Taylor vortex flow (NRTVF).
In (a) the situation is as in Fig. 1(a), but in (b), when the cylinder
rotates clockwise, the vortices rotate in the same radial direction as
in the first half-cycle.

Re(f) = Re g cos(wr). (4)

For most of the paper we make the simplifying assumption
that the aspect ratio I' takes only integer values, and so we
expect that, for steady rotations of the inner cylinder and
quasistatic increase of the Reynolds number, there will be I’
cells within the gap. At the relatively small Reynolds num-
bers which we consider we expect the flow to be axisymmet-
ric which is consistent with observations of steady Taylor-
Couette flow in this range. The governing equations are
solved by a finite-difference method using the stream
function-vorticity formulation. The equations are discretised
using second-order accurate centred differences and are time
stepped using a combination of second-order accurate Crank-
Nicolson and Adams-Bashforth methods. The Poisson equa-
tion for the stream function is solved using parallel SCALA-
PACK [13] linear algebra routines. An LU (lower-upper)
matrix factorization is performed before the time stepping
begins since the matrices involved in solving the Poisson
equation do not depend on time. This factorization is then
used in a call to a solver routine at each time step. Typically,
we use time steps of the order of 107 or 10~ and spatial
resolutions of N,=40-80 radial grid points with N,=I'N,
axial grid points. If the aspect ratio is not integer, we take the
number of axial grid points to be the nearest even integer
greater than I'N,.

The boundary conditions are the familiar no-slip condi-
tions u,=u.=0 at r=R; and R,, us=Re(r) at r=R;, and
ug=0 at r=R,. At the end walls we require u,=uy=u,=0 at
z=0 and h.

In an experimental apparatus a small gap must be left
between the rotating inner cylinder and the stationary end
walls to prevent temperature gradients building up which is
what would occur if the boundaries were allowed to meet.
This discontinuity creates difficulties in numerical calcula-
tions where the azimuthal velocity increases instantaneously
from O to Re. Due to the difficulties in determining the exact
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form of the boundary condition to model this situation, a
small parameter €<<1 is often used which enables the azi-
muthal velocity to vary smoothly between the boundary val-
ues along the end walls. The works cited in the Introduction
have generally used mesh refinement in the corners but it is
found that the disturbance caused by the discontinuity does
not extend significantly into the fluid provided the mesh size
is small enough. Indeed, Liicke er al. [14] remarked that no
anomalies could be found within a distance of 0.2 mm of the
corners of their experimental apparatus with a gap width of
6=1.126 cm. Figure 17 in Sec. IV represents an important
test of our code against known results. It shows the bound-
aries of symmetry-breaking bifurcations of the one- and two-
cell flows which we describe in that section. The curves were
initially determined experimentally by Benjamin and Mullin
[6] and then numerically by Cliffe [7] (at #=0.615) and Pfis-
ter et al. [8] (at =0.5, who also determined time-dependent
boundaries). Due to the small values of the aspect ratio in the
figure, the critical Reynolds numbers for the onset or disap-
pearance of new flow patterns could be particularly sensitive
to the effects of the discontinuity in the corners. To graphical
accuracy, our results (at 7=0.5) compare well with those of
Pfister ef al. [8]. In particular, the hysteresis region given by
BC in Fig. 17 may be extremely sensitive to experimental
errors and numerical inaccuracy; Pfister er al. [8] determined
the region to be 1.267<1"=<1.304, and we have determined
it to be 1.267=<I"=<1.294. Our results agree well with those
of Pfister et al. [8]. Furthermore, we tested our code on a
finer spatial mesh by increasing the number of radial grid
points from 80 to 160. We calculated the critical Reynolds
numbers at ['=0.25 on the curve AB and at I'=0.97 on the
curve CD, where the greatest inaccuracies lie in our code,
and found that they are altered by 0.1% with the increase in
the number of mesh points. Therefore, in our numerical code
we do not implement mesh refinement or give any special
treatment to the discontinuity in the corners.

III. RESULTS: REVERSING AND NONREVERSING
FLOWS

To make comparisons with the results from the infinite-
cylinder approximation we concentrate our attention on the
primary flow which develops smoothly from time-dependent
Couette flow as the modulation amplitude is increased. Just
as in the infinite-cylinder model we can distinguish between
low (w=4) and high (w=4) frequencies, so flows at two
different frequencies in the same low- or high-frequency re-
gime undergo the same transitions (but not necessarily at the
same Reynolds numbers). Therefore, we consider two fre-
quencies w=3 (which was classed as low-frequency in our
previous papers and is typical of RTVF for I"— ) which is
representative of flows in the low-frequency regime and
w="7 (which was classed as high frequency and is typical of
NRTVF at I'—) which is representative of flows in the
high-frequency regime. Note that both frequencies w=3 and
w="7 are relatively small, in the sense that the (dimension-
less) viscous penetration depth of the oscillating flow,
8,=(2/w), is of order unity. We do not discuss very high
frequencies where J; is not of order unity. The radius ratio is
7n=0.75.
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We shall be predominantly concerned with even aspect
ratios where, in the case of steady rotations of the inner
cylinder, we would expect there to be an even number of
cells which form from the ends and meet symmetrically at
the midplane. Some calculations were performed at noneven
(and noninteger) aspect ratios and they are described later in
Sec. III D. In order to understand the role played by the end
walls and to make connections to previous results obtained in
the infinite-cylinder approximation (I'— ), it is convenient
to distinguish between intermediate values of aspect ratio
(4<I'<12) and large values (I'=14).

A. Low-frequency modulation, intermediate aspect ratios

We first concentrate on the low-frequency case in which
w=3. We find that for all even aspect ratios 4<I"=<12 the
primary flow is NRTVF. The Taylor vortex cells form near
the ends and meet at the midplane. When the flow intensity is
at a maximum during a cycle, the number of cells depends
on the amplitude of modulation, Re,4. Figure 3 shows the
maximum positive and negative amplitudes of the radial ve-
locity u, within a cycle at the midpoint (in the middle of the
gap at the midplane) versus Re,,,q for a nonreversing flow.
Different flow regimes are possible, depending on Re,4, SO
we distinguish between small, intermediate, and large ampli-
tudes of modulation.

1. Small amplitude of modulation

To illustrate this regime we choose Re,,q=140 at I'=8.
Figure 4 shows the radial velocity u, at the midpoint versus
time over a cycle for NRTVFE. The period of the forcing is
7=2m/w, and the flow responds synchronously with a period
of 7/2. This is in agreement with the results of our previous
papers [1,2] in the infinite-cylinder approximation.

The primary flow developing from oscillating azimuthal
flow is a nonreversing flow with an inflow at the midplane.
When the cells have fully formed there are I'=8 cells within
the gap, inflows near the end walls, and, since I'/2=4 is
even, an inflow at the midplane. Figure 6, below, shows com-
puted contour plots of the stream function for NRTVF at
various times over half a cycle with parameters as in
Fig. 3 and for Re,,q=140. For the sake of graphical clarity,
we do not plot the stream function over the entire range
0=<z=TI"=8. The reason for this is that the cells close to the
end walls are always visible even at very low rotation rates,
so when the radial velocity at the midplane is very small it
may be much larger near the end walls. Consequently, using
the same number of contour levels over the whole length of
the cylinders would either hide the structure close to the
midplane as shown in Fig. 5(a) or make the concentration of
contours too high near the ends as shown in Fig. 5(b). We
choose instead to plot the stream function over 1<z<7
only, so that the flow structure near the midplane is fully
visible.

In Fig. 6(a) the inner cylinder is rotating in one particular
direction with the Reynolds number increasing toward the
maximum amplitude. The vortices respond by forming sym-
metrically from the ends with their own particular rotation
direction; in (b) the intensity of the flow at the midplane
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FIG. 3. Maximum positive amplitude (solid line) and maximum
negative amplitude (dashed line) of the radial velocity u, [at the
midpoint r=1+7/2(1-7%) and z=1"/2] versus amplitude of modu-
lation for Reoq NRTVF at #=0.75, I'=8, and w=3.

increases and in (c) there are eight fully formed vortices
within the gap as the modulation amplitude is close to maxi-
mum. The remaining figures (d)—(f) show the flow structure
as the modulation amplitude decreases toward zero until we
are left with only a strong Ekman circulation near to the end
walls. Note that for a brief moment during the decay—see
(e)—the radial flow at the midplane actually becomes posi-
tive, indicating outflow rather than inflow. However, this
transient is so short and its amplitude so small—|u,|
~(.001 in (e) compared to |u,|=6 in (c). In the second part
of the cycle when the inner cylinder rotates in the opposite
direction the vortices respond by rotating in the same direc-
tion as in the first part of the cycle.

2. Intermediate amplitude of modulation

As the modulation amplitude is further increased, this
nonreversing flow undergoes a smooth transition to another
flow structure (again with eight fully formed cells) which
corresponds to the region of 150=<Re 4= 160 in Fig. 3. In
this region the maximum positive and negative amplitudes of
the radial velocity are of the same order. Figure 7 shows
the radial velocity versus time as in Fig. 4 but now for
Re,,q=155.

100

0 Re(t)

—100

-6 ! et
4.0 4.5 5.0 5.5

t

FIG. 4. Radial velocity u, [at the midpoint r=1+7/2(1-7) and
z=I"/2] versus time over a cycle for NRTVF at =0.75, I'=8,
=3, and Re,,,q=140 (solid line). Also shown (dashed line) is the
Reynolds number Re(r)—see vertical axis on the right. In this and
subsequent time-series figures, we plot the achieved settled oscilla-
tions past the initial transient; ¢ is the time taken from the initial
time 7=0.
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(a)

FIG. 5. Computed contour plots of the stream function over the
whole length of the cylinder 0 <z=28 showing the problems pre-
sented by the choice of contour levels. In (a) the number of contour
levels is chosen so as to capture the structure at the ends, but this
hides the structure close to the midplane; in (b) the number of
contour levels is chosen so as to show the structure at the midplane,
but now the contours are too dense close to the ends.

In contrast to the case where Re 4= 140 the radial veloc-
ity changes sign during a cycle, suggesting that this flow is
actually a reversing flow. However, this flow again responds
to the driving period 7 with a period of 7/2. We found in our
previous papers that the nonreversing flows always re-
sponded to the driving with a period of 7/2 and the reversing
flows responded with a period of 7. Figure 7 appears to
shows a reversing flow which responds with a period of 7/2.

The true nature of the flow is revealed by contour plots of
the stream function at various times within half a cycle as in
Fig. 8. The axial extent of the plots is again 1<z=<7 for
clarity. In Fig. 8(a) the Reynolds number of the inner cylin-
der is increasing and the vortices respond by forming sym-
metrically from the ends; in (b) the Reynolds number reaches
its maximum amplitude within the half-cycle and two new
vortices appear from the inner cylinder and attempt to push
themselves across the gap. At this point the radial velocity is
at its maximal positive amplitude |u,|=~6. However, the
modulation amplitude is not large enough and, when the
Reynolds number begins to decrease (c), these two new vor-
tices are squeezed back out by the stronger vortices that have
already formed symmetrically from the ends. At this time of
the cycle there are I'=8 cells within the gap and the radial
velocity achieves its maximum negative amplitude. In (d)—(f)
as the Reynolds number decreases within the half-cycle, the
vortices decay in the same way as in Fig. 6. In the second
part of the cycle the same flow structure emerges. We con-
clude that the flow is actually a nonreversing flow. The rea-
son for the positive u, in Fig. 7 for t=5.4 and 6.5 is that as
the small vortices appear from the inner cylinder, the radial
velocity must change sign as the polarity of the small cells is
different to the cells that are already closest to the midplane.
When the small vortices subsequently disappear, the original
polarity of the cells and the sign of the radial velocity are
restored.
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(e) ®

FIG. 6. Computed contours of the stream function for a nonre-
versing flow at I'=8, #=0.75, w=3, and Re,,q=140, plotted only
for 1 <z<7. When the vortices form, there are I'=8 cells within
the gap. The flow responds to the driving (period 7=2m/w) with
period 7/2. The times of the snapshots are (a) t=4.246 (which cor-
responds to 0.3087 during a cycle which begins at =3.600), (b)
1=4.318(0.3437), (c) r=4.495(0.4277), (d) t=4.856(0.6007), (e)
1=4.887(0.6147), and (f) 1=4.939(0.6397). Solid contours represent
vortices rotating counterclockwise; dashed contours represent vor-
tices rotating clockwise. The inner cylinder is on the left and the
outer cylinder on the right.

3. Large amplitude of modulation

There is a final smooth transition from this flow structure
to another state as the modulation amplitude is further in-
creased. This corresponds to the region of Re =160 in
Fig. 3. In this case the radial velocity does not change
sign within a cycle, but in contrast to the case where
Re,,,q=140, it increases in the positive direction. The flow
again responds with period 7/2. Figure 9 shows the radial
velocity at the midpoint versus time over a cycle for this flow
at Re,,g=180.

Contour plots of the stream function for Re,,=180 at
various times during a cycle are shown in Fig. 10. The vor-
tices form symmetrically at the end walls as the Reynolds
number is increased—see Fig. 10(a)—as in Secs. IIT A 1 and
III A 2. In (b) for Re,,,q=155, two new vortices appear from
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FIG. 7. Radial velocity u, versus time over a cycle as in Fig. 4
for NRTVF with the same parameters except Re,,q=155.

the inner cylinder. However, in contrast to the case
Re0,q=155, the modulation amplitude is now large enough
that the new small vortices can force their way across the gap
and grow to the size of the other vortices. In (c), as the
Reynolds number is maximal within the half-cycle, there are
now I'+2=10 cells within the gap, giving rise to an outflow
at the midplane. The vortices then decay in (d)—(f) as the
Reynolds number decreases.

The scenarios presented above are representative of all the
nonreversing flows that are found for even aspect ratios
I'=12 and for low frequency. When I'/2 is even, as in the
cases above, the primary flow is a nonreversing flow with I"
cells and with an inflow at the midplane. As the modulation
amplitude is increased, this flow undergoes a transition to a
nonreversing flow with I'+2 cells and an outflow at the mid-
plane. When I'/2 is odd the primary flow is a nonreversing
flow with I' cells with an outflow at the midplane; then, as
the modulation amplitude is increased, the resulting flow is a
nonreversing flow with I'+2 cells and an inflow at the mid-
plane.

Due to the Ekman circulation induced by the end walls,
the bifurcation is imperfect so the transition from oscillating
azimuthal flow to cellular vortex flow is smooth. It is there-
fore impossible to accurately state the critical modulation
amplitude for the bifurcation, but it is clear that, as the aspect
ratio is increased, the oscillating azimuthal flow becomes
more stable and the transition to the cellular state is pushed
to higher modulation amplitudes. The region in which the
radial velocity is both positive and negative during a cycle is
pushed to higher Reynolds numbers as the aspect ratio is
decreased.

B. Low-frequency modulation, large aspect ratios

For even aspect ratios I'= 14 at low frequency of modu-
lation, the primary flow is no longer a nonreversing flow but
a reversing flow. Figure 11 shows the maximum positive and
negative amplitudes of the radial velocity at the midpoint
versus modulation amplitude, Re,,.q4, for a reversing flow at
I'=14. From this figure it can be seen that the maximum
positive and negative amplitudes of the radial velocity are of
the same order, although they are not equal and opposite.
This is due to the different intensities and sizes of the inflow
and outflow jet regions. It is also apparent from the figure
that, unlike for intermediate aspect ratios where increasing
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(e) ()

FIG. 8. Computed contours of the stream function for a nonre-
versing flow at I'=8, 7=0.75, w=3, and Re,, =155 and for
I <I'<<7. When the vortices form there are I'=8 cells within the
gap. The flow responds to the driving with period 7/2. The times of
the snapshots are (a) =5.254 (which corresponds to 0.3127 during
a cycle which begins at r=4.600), (b) =5.410(0.3877), (c)
1=5.629(0.4917), (d) 1=5.906(0.6247), (e) 1=5.938(0.6397), and (f)
1=6.042(0.6897). Solid contours represent vortices rotating counter-
clockwise; dashed contours represent vortices rotating clockwise.
The inner cylinder is on the left and the outer cylinder on the right.

the modulation amplitude gives rise to three different re-
gimes, the flow pattern remains the same for all supercritical
modulation amplitudes considered. Figure 12 shows the ra-
dial velocity at the midpoint versus time over a full cycle:
note that u, changes sign with Re(z).

The number of cells that fill the gap now depends on the
Reynolds number within a cycle. For the first part of the
cycle, when the Reynolds number is positive, there are
I'=14 cells within the gap; for the second part of the cycle,
when the Reynolds number is negative, there are I'+2=16
cells within the gap. As for the case of infinite cylinders
[1,2], there is a smooth transition between these two states,
as a nodal line [the locus of points in the (r,z) plane where
u,=0] crosses the gap. This nodal line is well known in the
case of steady counterrotating cylinders [15]; however, the
nodal line is at a fixed radial position and does not move
across the gap. The key difference between the case of finite
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FIG. 9. Radial velocity u, versus time over a cycle as in Fig. 4
for NRTVF with the same parameters except Re,,q=180.

but large aspect ratio and the limit I" — oo is that, for finite I,
not all the vortices reverse their rotation direction. We find
that the cells closest to the end walls always rotate in the
same direction during a cycle, leaving a reversing flow in a
section away from the end walls. Two new cells appear sym-
metrically about the midplane at the boundary between the
reversing and nonreversing cells. This is why there are T’
cells for the first part of the cycle and I'+2 cells for the
second part.

We illustrate the low-frequency, large-aspect-ratio regime
with Re,,4=170 which is representative of the flows found
for Re,,q=140. Figure 13 shows contours of the stream
function for a reversing flow at I'=14 and Re,,4=170 at two
different times during a cycle. The contours are shown for
0=<z=<TI'/2 for clarity (the same pattern is found in the upper
part of the cylinder). In Fig. 13(a) the Reynolds number is
positive and there are I'=14 cells within the gap; in (b) the
Reynolds number is negative and there are I'+2=16 cells
within the gap. It can be seen from the figure that the three
cells closest to the end walls exhibit no deformation in size
with only a slight deformation in the fourth cell. It is in this
region that there is no reversal of the cells; for z larger than
about 4 the cells are squeezed in the axial direction in the
second part of the cycle to allow the extra cells to fit within
the gap.

Figure 14 shows, in more detail, the reversing flow during
the brief interval in which a reversal takes place in the
middle region. The figures are plotted for 3=<z=11 only;
outside this region the cells do not undergo the reversal. In
Fig. 14(a) there are fully formed vortices which fill the entire
gap radially; to follow the reversal process we label the po-
sition of the second, third, and fourth cells from either end of
the central section 3=<z=<11 of the cylinder which is shown
with the symbols A, B, and C, respectively. In Fig. 14(a) the
cells at A, B, and C are of equal size. In (b) two new cells
start to appear near the inner cylinder on either side of the
midplane and the B cells are pushed towards the outer cyl-
inder by a “nose” which forms on the A cells. This process
continues in (c). In (d) there are now four cells in the regions
marked C; a nodal line divides the two cells near the inner
cylinder from the cells near the outer cylinder, exactly as in
our previous calculations with the infinite-cylinder model.
The nodal line moves quickly across the gap, while the cells
at B are pushed radially out by the growing cells at A. Fi-
nally, in (f) there are now fully formed vortices which extend
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FIG. 10. Computed contours of the stream function for a non-
reversing flow at I'=8, 7=0.75, w=3, and Re,,q=180 and for
I1<I'<7. When the vortices form there are I'+2=10 cells within
the gap. The flow responds to the driving with period 7/2. The
times of the snapshots are (a) t=4.156 (which corresponds to
0.2567 during a cycle which begins at ¢=3.620), (b)
1=4.198(0.2767), (c) r=4.281(0.3167), (d) t=4.777(0.5527), (e)
t=4.870(0.5977), and (f) 1=4.933(0.6277). Solid contours represent
vortices rotating counterclockwise; dashed contours represent vor-
tices rotating clockwise. The inner cylinder is on the left and the
outer cylinder on the right.

across the gap with opposite polarity to those in (a).

The reversal process takes place in a fraction of a diffu-
sion time and the time scale on which it occurs is comparable
to the time scale based on the modulation amplitude Q, of
the inner cylinder. The relation between the time based on
the diffusion time scale, f4, and the time based on the
modulation amplitude of the inner cylinder, f#,,4, iS
tmod=Remoa(1 = 7)taie/ 7.

As the aspect ratio is increased, the number of vortices
undergoing a complete reversal increases, while the number
of vortices close to the ends which do not undergo a reversal
remains roughly constant at about 3-5. This is true for all
aspect ratios up to the largest we examined at I'=40, and at
this aspect ratio most of the vortices within the gap are free
from the influence of the Ekman circulation.
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FIG. 11. Maximum positive amplitude (solid line) and maxi-
mum negative amplitude (dashed line) of the radial velocity u,
[measured at r=1+7%/2(1-7) and z=T"/2] versus amplitude of
modulation Re 4 for RTVF at #=0.75, I'=14, and w=3.

C. High frequency of modulation

At the higher frequency of w=7 there is no evidence of
any reversing flow for all aspect ratios considered,
4<TI'=<40. This is in agreement with the infinite-cylinder
model where only nonreversing flows were found at higher
frequencies. The only interesting feature of the high-
frequency case is the number of cells that are formed when
the Reynolds number is supercritical. For even aspect ratios
4<TI'<8 the primary flow is a nonreversing flow with T’
cells but for I'=10 the primary flow is a nonreversing flow
with I'+2 cells. As in the low-frequency case, these nonre-
versing flows respond to the driving with period 7/2.

In the high-frequency case it is straightforward to find a
secondary disconnected flow. To begin with, a flow on the
primary branch is found with modulation amplitude +Re,,4;
for 4<I'<8 this flow has I' cells, and for I'=10 it has
I"'+2 cells. Then, within the cycle, the sign of the modulation
amplitude is instantaneously switched to —Re,,,4. This corre-
sponds to an instantaneous change of rotation direction of the
inner cylinder. The resulting flow is on the disconnected
branch of the bifurcation and for 4<I'<8 this flow has
I'+2 cells, whereas for I'=10 it has I'+4 cells. All these
flows respond to the driving with period 7/2.

D. Noninteger, noneven aspect ratios

Some calculations have been done to determine the tran-
sition between flows as the aspect ratio is increased but the
modulation amplitude is fixed.

For intermediate aspect ratios and low frequencies the
flow patterns observed are qualitatively similar to those
when fixing the aspect ratio and varying the modulation am-
plitude as in Figs. 6, 8, and 10. If we let I'; and I',>T"; be
two consecutive even aspect ratios (and for not too large
modulation amplitude), then when I'=I"; the primary flow
consists of I'; cells and when I'=I", the primary flow con-
sists of I'; cells. These flows are nonreversing flows. As the
aspect ratio is increased from I'; to I'; two new cells start to
appear from the inner cylinder just as in the case of interme-
diate amplitude of modulation with fixed aspect ratio (Fig.
8). When the aspect ratio is not large enough these two new
cells are squeezed back out by the existing cells, leaving a
flow with I"; cells; however, when the aspect ratio is larger
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FIG. 12. Radial velocity u, versus time over a cycle as in Fig. 4
for RTVF with the same parameters except I'=14 and Re,,q=170.
The flow responds synchronously to the driving with a period of 7.

these two new cells are able to extend across the gap and
grow to the size of the existing vortices leaving a flow with
I'; cells (Fig. 10). This is a smooth process as the aspect ratio
is increased, and there is no definite aspect ratio at which the
two new cells appear. The same process occurs for higher
modulation amplitudes where the flow consists of I'+2 cells.

For larger aspect ratios and low frequencies a slightly
different transition takes place as the aspect ratio is increased
from I'; to I',. When I'=I"; the flow is reversing with I’
cells in the first part of the cycle and I'j+2 cells in the
second part of the cycle. As the aspect ratio is increased
toward I', the flow is still reversing but now has I'; cells in
the first part of the cycle and I';+2 cells in the second part of
the cycle. Describing the transition as the aspect ratio is in-
creased is most easily undertaken using an example and with
reference to Fig. 15 where I'=15, Re,,,q=150, and w=3. Let
I';=14 and I';=16; then, when I"=14 there are 14 cells in the
first part of the cycle and 16 in the second part of the cycle;
when I'=16 there are 16 cells in the first part of the cycle and
18 in the second part of the cycle. If the aspect ratio is
increased but is not large enough, then there is still an oscil-
lation of 14 and 16 cells within the cycle. If the aspect ratio
is further increased, 18 cells try to fit in the gap, creating an
oscillation between 16 and 18 cells. This attempt is seen as
two new cells appearing from the inner cylinder as in Fig.
15(a) but not at the midplane—the two new cells try to fit in
two cells away from the midplane and they are incredibly
compressed in the axial direction. Figure 15(b) shows the
two new cells pushing further across the gap. However, if the
aspect ratio is still not large enough, these two new cells are
squeezed out [Fig. 15(c)] and the two cells that were either
side of them coalesce to form a new cell, leaving 14 cells in
the gap [Figs. 15(d)-15(f)]. Once the aspect ratio is large
enough, the two new cells are robust enough to survive and
the flow does indeed show an oscillation between 16 and 18
cells. Just as for intermediate aspect ratios this is also a
smooth process and there is no definite aspect ratio where the
oscillation can be seen to be between 16 and 18 cells rather
than between 14 and 16.

The picture is not so clear for aspect ratios in the range
12<I'<14. In this range of aspect ratios it is very difficult
to obtain critical modulation amplitudes and/or aspect ratios
for transitions between reversing and nonreversing flows and
also for transitions of flows with different numbers of cells.
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(a) {b)

FIG. 13. Computed contours of the stream function for a revers-
ing flow at I'=14, =0.75, w=3, and Re,,4=170, plotted in the
region 0<z=<7 only. When the vortices form there are (a) '=14
cells within the gap in the first part of the cycle and (b) ['+2=16
cells in the second part of the cycle. The flow responds to the
driving with period 7. Solid contours represent vortices rotating
counterclockwise; dashed contours represent vortices rotating
clockwise. The inner cylinder is on the left and the outer cylinder on
the right.

The main reason for this is that there is now competition
between the reversing and nonreversing flows. However,
some progress has been made in determining a general pic-
ture of the transitions. For most of the range the primary flow
is a nonreversing flow which initially has 12 cells but which
undergoes a smooth transition to 14 cells as the modulation
amplitude is increased (just as in the intermediate aspect ra-
tio regime "< 12). However, a sufficient discontinuous jump
in the modulation amplitude close to the critical region for
the onset of the primary flow causes the flow to become a
reversing flow with an oscillation between 14 and 16 cells
(just as in the large aspect ratio regime I"= 14). For example,
at I'=13 the nonreversing flow is the primary flow at
Re0q= 140. If the modulation amplitude is increased sud-
denly to 147, the flow remains as a nonreversing flow; how-
ever, if the modulation amplitude is increased suddenly from
140 to 148, the flow is a reversing flow.

When the frequency is higher, the reversing flows no
longer exist and the transitions between nonreversing flows
as the aspect ratio is increased are the same as for the low-
frequency case.

IV. RESULTS: VERY SMALL ASPECT RATIO

Now we turn our attention to the case where the height of
the cylinders is of the order of the gap width (and I" is no
longer restricted to being an integer). In this regime revers-
ing and nonreversing flows do not exist and we no longer
discuss transitions between them. In the case of steady rota-
tions of the inner cylinder and fixed outer cylinder, a wide
variety of flows have been discovered including axisymmet-
ric time-dependent and ‘“‘side-by-side” flows, depending on
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FIG. 14. Computed contours of the stream function for a revers-
ing flow at '=14, 5=0.75, w=3, and Re,,y=170, plotted in
3=<z=<11 only as the reversal process takes place. The flow re-
sponds to the driving with period 7. The times of the snapshots are
(a) t=6.916 (which corresponds to 0.5817 during a cycle which
begins at t=5.700), (b) 1=6.956(0.6007), (c) r=6.962(0.6037), (d)
1=6.966(0.6047), (e) t=6.970(0.6067), and (f) #=7.006(0.6247).
Solid contours represent vortices rotating counterclockwise; dashed
contours represent vortices rotating clockwise. The inner cylinder is
on the left and the outer cylinder on the right. Note how the B cells
are pushed radially out until they disappear.

the route taken through parameter space. The final flow pat-
tern can depend strongly on sudden starts of the cylinder or
discontinuous jumps of the aspect ratio. For sufficiently
small Reynolds numbers the basic flow is a symmetric two-
cell state composing of an Ekman circulation induced by the
ends. For a large range of aspect ratios the bifurcation from
this two-cell state is to an asymmetric one-cell flow compris-
ing one large cell with a smaller one in the corner next to the
inner cylinder. Figure 16 shows these two flow patterns at the
same parameters; only the route taken through parameter
space to arrive at these states is different. The different flow
patterns as a function of Reynolds number Re and aspect
ratio I' were first determined experimentally by Benjamin
and Mullin [6] and then numerically by Cliffe [7] (at radius
ratio 7=0.615) and later by Pfister er al. [8] at 7=0.5. For
the rest of this paper we consider a radius ratio of 7=0.5.
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FIG. 15. Computed contours of the stream function showing the
appearance of extra cells in the second part of the cycle of a revers-
ing flow with noneven aspect ratio I'=15, Re,q=150, and w=3.
The appearance of the extra cells means that 18 cells try to fit in the
gap, but the aspect ratio is not large enough and they are squeezed
out leaving 14 cells. The flow responds to the driving with period 7.
The times of the snapshots are (a) t=12.812 (which corresponds to
0.4977 during a cycle which begins at r=11.771), (b)
1=12.874(0.5277), (c) rt=12.979(0.5777), (d) +=13.000(0.5877), (e)
t=13.104(0.6367), and (f) r=13.209(0.6877).

Figure 17 shows the region of parameter space examined
by Pfister et al. [8] for steady rotations which is relevant to
our investigation of modulated flows. There are also time-
dependent flows in this region (which we do not show in the
figure), which we have found in agreement with Pfister et al.
[8]. We have recomputed all stability curves shown in Fig.
17 for testing purposes, and our results agree with theirs to
graphical accuracy. The figure shows the interaction between
one- and two-cell flows. The curve ABCD corresponds to a
symmetry-breaking bifurcation leading to the onset of the
asymmetric one-cell state. The arrows (up or down) in the
figure represent whether the boundary is found by a quasi-
static increase or decrease in the Reynolds number. In the
region BC (see inset) there is hysteresis between the one- and
two-cell states. In the region CE the one-cell flow is no
longer realizable by a smooth increase of the Reynolds num-
ber; this boundary can only be found by, for example, a
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FIG. 16. Computed contours of the stream function of the (a)
one-cell and (b) two-cell flows at I'=1.2, =0.5, and Re=400.
Solid lines represent vortices rotating counterclockwise; dashed
lines represent vortices rotating clockwise. The inner cylinder is on
the left, the outer cylinder on the right.

sudden start of the cylinder or by a jump in aspect ratio from
the region inside ABCD to outside and above CE.

If the inner cylinder does not rotate at constant angular
velocity but is modulated as in Eq. (1), a direct comparison
with Fig. 17 is not possible. The reason is that there is no
equivalent to a sudden start of the cylinder—the time-
dependent Reynolds number changes smoothly during a
cycle. We should not expect to be able to find boundaries
such as CD or CE, which are realized by sudden jumps in
Reynolds number above the boundaries in the steady case.

At subcritical modulation amplitudes the basic flow is a
symmetric two-cell flow, similar to the steady case as shown
in Fig. 16(b). The only effect of the modulation is to cause a
slight deformation of the cells and to make the vortex cores
shift slightly during the cycle. The midplane region is always
an outflow (the cells do not switch sign).

As in the steady case, the bifurcation from the oscillatory
two-cell flow is to an asymmetric state with nonzero axial
velocity at the midplane. For various modulation frequencies
ranging from w=3 to w=50 we have found that the onset of
the asymmetric state is smooth as the modulation amplitude
is increased. Only when the modulation amplitude is large
enough can a definite asymmetric flow pattern be recog-
nized; an example is shown in Fig. 18, where I'=1, w=4,
and Re,,,4=400.

Over the period 7/2 (where 7 is the period of the forcing)
an oscillation between the two states shown in Fig. 16 oc-
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FIG. 17. Critical steady Reynolds number Re. versus aspect
ratio I' for the transition between one- and two-cell flows for
7=0.5. The arrows denote whether the boundaries can be found by
a quasistatic increase () or decrease (|) of the Reynolds number.
The inset is an enlargement of the hysteresis region.
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FIG. 18. Computed contours of the stream function for the os-
cillation between one- and two-cell flows at I'=1, #=0.5, w=4, and
Re04=400. The times of the snapshots are (a) r=17.059 (which
corresponds to 0.0067 during a cycle which begins at r=17.050), (b)
t=17.355(0.1947), (c) t=17.433(0.2447), (d) t=17.612(0.3587), (e)
t=17.729(0.4327), and (f) t=17.807(0.4827). Solid contours repre-
sent vortices rotating counterclockwise; dashed contours represent
vortices rotating clockwise. The inner cylinder is on the left and the
outer cylinder on the right.

curs. The flow responds to the driving with period 7/2. When
the time-dependent Reynolds number is less than the critical
modulation amplitude, the flow is a symmetric two-cell state,
but when it is greater than critical the flow is an asymmetric
one-cell state, with a smooth transition between the two
states.

As the modulation frequency is increased significantly the
flow has less time to oscillate fully between the symmetric
and asymmetric states, and so for larger frequencies the flow
remains in an asymmetric state as in Fig. 16(a) with slight
deformations of the cells and movement of the vortex cores.

Although it is not possible to accurately calculate the
critical modulation amplitude of the onset of this asymmetry,
it is clear that the modulation has a stabilizing effect and so
the symmetry-breaking bifurcation occurs at larger Reynolds
numbers than in the steady case.

We have also found that, as expected, in the range of
aspect ratios given by CE in Fig. 17 there is no symmetry-
breaking bifurcation and the flow pattern remains as a two-
cell symmetric state.

Further exploration of the parameter space has revealed
the existence of an oscillating “side-by-side” flow where the
cells are positioned radially instead of axially. In the steady
case Pfister ef al. [8] mention observing a “side-by-side two-
cell state” at a Reynolds number of Re=2000 and aspect
ratio of I'=0.68. This state was later confirmed to exist by
Furukawa et al. [11] in a region of parameter space given by
approximately 0.6=<I"=<0.9 and 700 <Re =< 1400; the radius
ratio in this case was 7=0.667. We have found this flow to
exist at I'=0.7, w=3, and Re,,,4=1500. Contour plots are
shown in Fig. 19. When the time-dependent Reynolds num-
ber is supercritical the flow pattern has the side-by-side
structure as in the steady case, where the two cells are posi-
tioned radially instead of axially; there is still a small vortex
in the corner next to the inner cylinder. When the Reynolds
number is subcritical, the flow has the familiar two-cell sym-
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FIG. 19. Computed contours of the stream function for
the oscillating “side-by-side” flow at I'=0.7, =0.5, w=3, and
Re0q=1500. The times of the snapshots are (a) t=12.177 (which
corresponds to 0.207 7 during a cycle which begins at r=11.743), (b)
1=12.239(0.2377), (c) r=12.721(0.4677), (d) t=13.025(0.6127), (e)
t=13.088(0.6427), and (f) r=13.161(0.6777). Solid contours repre-
sent vortices rotating counterclockwise; dashed contours represent
vortices rotating clockwise. The inner cylinder is on the left and the
outer cylinder on the right.

metric pattern. As in the oscillation of the one- and two-cell
patterns the side-by-side flow responds to the driving with
period 7/2. The process by which the radially positioned
cells appear is as follows: in Fig. 19(a) the Reynolds number
is subcritical within the cycle and we have a two-cell state.
As the Reynolds number increases in (b) the lower (clock-
wise rotating) cell begins to split the upper (counterclock-
wise rotating) cell; in (c) as the Reynolds number is close to
maximal the upper cell has been split in two, with one part
forming the small cell close to the inner cylinder and the
other part forming a second radial cell. This process is re-
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versed in (d)—(f) as the Reynolds number becomes subcriti-
cal within the cycle. The whole process is then repeated in
the second half of the cycle.

We have also found a very similar side-by-side flow struc-
ture which responds to the driving with a period 7 at the
same parameters as in the previous case except at a slightly
higher frequency of w=4. For the first part of the cycle the
flow pattern is exactly as in Fig. 19. However, in the second
part of the cycle, it is the upper (counterclockwise rotating)
cell which splits the lower (clockwise rotating) cell so that,
whereas in Fig. 19(c) the small cell is in the upper-left corner
of the cylinder, it is now in the lower-left corner of the cyl-
inder, and the polarity of the two large radial cells is
switched.

V. CONCLUSIONS

The initial motivation of this work was to determine if
nonreversing flow solutions of the Navier-Stokes equations,
found between infinitely long cylinders [1,2], exist in an ex-
perimentally realistic geometry which includes the top and
bottom ends. We have found that not only is the answer
positive, but nonreversing flows are actually favoured, unless
the aspect ratio is rather large. In this case—see Sec.
IIT B—we recover results known from the infinite cylinder
approximation.

We have also examined the very small aspect regime and
revealed a large variety of flow patterns which are induced
by the Ekman circulation, including side-by-side vortices.

It would be interesting to examine the effects of tapered
cylinders on the reversing and nonreversing flows (as stud-
ied, for example, by Ning er al. [16] for steady flows) where
the Reynolds number is subcritical in a region near the top
and bottom ends.
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